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1. Introduction

During the past six months the research objectives outlined in the last semi-annual re-

port [1] have been accomplished. Specifically, three-dimensional (3-D) fuel-optimal ascent

trajectory of the aerospace plane and the effects of thrust vectoring control (TVC) on the

fuel consumption and trajectory shaping have been investigated; the maximum abort land-

ing area (footprint) has been studied; preliminary assessment of simultaneous design of the

ascent trajectory and the vehicle configuration for the aerospace plane has also been con-

ducted. An important goal of this research program is graduate student training. Mr. John

Samsundar, a graduate student of Iowa State University, completed his Master of Science

degree in Aerospace Engineering in May, 1993, under the support of this grant. His thesis

is titled "An Investigation of Optimal Trajectories for an Aerospace Plane" [2]. Work under

this grant has also produced a full length article in an archived journal during this period

[3]. The following summarizes the work accomplished in the last six months. More detailed

information can be found in [2-3].

\

2. Three-Dimensional Minimum-Fuel Ascent

So far all the research efforts on the study of minimum-fuel ascent trajectory of the

aerospace plane have been exclusively in two-dimensional flight. The actual flight of the

aerospace plane will not likely be restricted to 2-D flight, since some out-of-plane maneuvers

may be required for given conditions at take-off and orbital insertion. It would be of great

interest to understand how the out-of-plane maneuvers will influence the fuel consumption

along the minimum-fuel trajectory, and whether or not the conclusions from study of 2-D

flight will be valid for 3-D cases. While there is no more theoretical difficulty in 3-D flight

than in 2-D case, the numerical difficulty is increased considerably because not only the

number of state variables and controls in 3-D flight is increased, but also the inequality

constraints on the trajectory are more difficult to satisfy. An inverse dynamics approach for

trajectory optimization was developed in the first year of this research [3]. This approach



reducesthe influence of poor conditioning typically associatedwith hypersonic trajectory

optimization problems and has been very successful in 2-D trajectory optimization for the

aerospace plane. It appears logical to continue to use this technique in 3-D flight.

The 3-D point-mass equations of motion for the aerospace plane over a spherical, nonro-

tating earth are
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where r is the radius from the center of the earth to the aerospace plane, ¢ latitude, v

speed, "7 flight path angle, %bheading angle, and m mass. The independent variable is 0, the

longitude. The prime denotes differentiation with respect to 0. The control variables are

angle of attack a, bank angle or, and fuel equivalence ratio f_ that influences the thrust T of

the airbreathing engines and specific impulse I_ v. The idea of inverse dynamics is used as

follows: Let c(O) be a specified profile of the radius. Let

r(O) =c(0) (7)

Differentiating Eq. (7) twice gives
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Using Eqs. (4) and (8) results in
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For given valuesof all the state variables,T, _ and G, Eq. (9) implicitly defines the required

a to follow Eq: (7), which can be solved for numerically. Since this approach puts more direct

control on the trajectory shaping by specifying r, the optimization process is more stable

and much less sensitive to control variations. The problem is solved by parameterizing Ft, a

and r as functions of 8. The corresponding trajectory is obtained by numerically integrating

the equations of motion. This way, the problem becomes a parameter optimization problem

and a sequential quadratic programming (SQP) algorithm has been used to solve it [3].

The following initial and terminal conditions have been used in generating the solutions

r(0) = Ro radius of the earth

¢(0) = 0

v(0) ---- 170 m/s (Mach 0.5)

_(0) = 0

¢(0) = 0

(lO)

m(0) -_ 133,809 kg (295,000 lbf)

r(tf) -- Ro + 55 km

¢(tj) = 0o, 5o, 10o, 15°

v(tf) = 7839 m/s

_(tj) = o

¢(tj) = f_e

and an operational constraint

(11)

3

q _< 95,760 N/m 2 (2000 psf) (12)

Figure 1 depicts the ascent trajectories for four cases. They almost coincide with each

other. Other features of the 3-D trajectories also closely resemble those observed in 2-D cases

[2-3]. The following table gives the time-of-flight and final mass for each of the trajectories.



Table 1: Time-of-flight and final massfor various final latitudes

¢/(deg.) t/(sec.) m/(kg)

0 1311.2 67,112.0

5 1312.3 67,111.5

10 1312.5 67,111.1

15 1314.0 67,107.7

It is clear that there is practically no extra penalty on the fuel consumption for 3-D

trajectories as compared to the 2-D case (¢/= 0°). The reason may become evident when

one inspects Figs. 2 and 3 which show the histories of bank angle a(t) and latitude vs.

longitude, respectively. It is seen that the vehicle only uses large bank angle in a short

initial period to steer it into an appropriate plane and then remains approximately in planar

motion thereafter. Figure 4 confirms this feature by showing the almost constant heading

angle histories of the aerospace plane, after a quick initial change that aligns the vehicle in

the right direction. Therefore for the most part, an optimal 3-D trajectory is in 2-D flight.

Thus it may be concluded that the study of 2-D flight for the aerospace plane appears to be

sufficiently representative of general motion in terms of fuel consumption and characteristics

of the trajectory.

3. Abort Landing

As part of the investigation of the optimal trajectories for the aerospace plane, the ca-

pability of safe landing of the aerospace plane was assessed. The starting point is chosen

to be a typical hypersonic cruise condition. Should any propulsion system failure develop

at this point, the maximum reachable distances in all directions need to be known in order

to explore all abort possibilities and determine an appropriate landing site. The trajectory

optimization problem is also known as the footprint problem [4]. The formulation of the

problem is as follows:

maximize ¢(tl)



subject to the equations of motion Eqs. (1)-(5) with T = 0, initial conditions

r(0) = Ro+ 30.5 k.,

¢(0) = 0

0 = 0

v(0) = 3351 m/s (Mach

_(0) : 0

¢(0) = 0

11) (13)

(14)

and terminal conditions

r(tj) =

O(tj) =

v(tr) =

7(tr) = free

¢(tr) = free

RO

Or

170 m/s (15)

When 0 r takes all possible values, the ground track of the point (0I, Cr) represents the

boundary of the maximum landing area (footprint). This is a 3-D trajectory optimization

problem. The controls are the aerodynamic forces influenced by o_ and o- subject to 1(7] _<

85 °. The problem is solved by directly parameterizing a(t) and a(t) and using the SQP

algorithm. Figure 5 shows the footprint with the ground tracks of several trajectories. It is

seen that that maximum downrange is about 2641 km and the maximum crossrange 1677

kin. The minimum downrange is about -540 km (behind the starting point). The aerospace

plane can glide to any landing site inside this footprint. Figure 6 illustrates some typical

altitude profiles on the footprint. The oscillations in the altitude histories are characteristic

of hypersonic optimal gliding trajectories [4]. The c_(t) history for a typical trajectory is

plotted in Fig. 7. We notice that the optimal o< at each instant is approximately equal to
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the value at which the lift-to-drag ratio CL/CD is maximized at that Mach number. This is

also consistent with what previous researchers have observed [4]. Some bank angle histories

are shown in Fig. 8.

4. Further Improvement on Fuel Efficiency

Because of the stringent flight path constraints and highly demanding orbital insertion

conditions, the future aerospace plane is not likely to have any significant fuel margin. This

part of the research aims at exploring various possibilities of further enhancing fuel efficiency

of the aerospace plane.

4.1 Thrust Vectoring Control

The configuration of the aerospace plane (forebody as part of the compressor and aftbody

as part of the nozzle) probably will make TVC difficult, and any TVC would be very limited

if possible at all. However, from a trajectory analysis point of view, it would be interesting

to have an assessment as how much more fuel could be saved should TVC is available. To

this end, we allow a nonzero thrust angle c to be used. The system equations are the same as

Eqs. (1)-(6) except that the terms sina and cosa in Eqs. (3)-(5) are replaced by sin(a-e)

and cos(a - ¢). The study is restricted to 2-D flight. There are three control variables a, ¢

and f/. Again, _ and _ are parameterized directly and a solved using the inverse dynamic

approach. The initial and terminal conditions are the 2-D versions of the conditions in Eqs.

(10-11) with constraint (12) enforced. The objective is to find the minimum-fuel ascent

trajectory.

Figure 9 shows the a and ¢ histories. With TVC, the final mass of the aerospace plane

is 67,340 kg, comparing with 67,112 kg without TVC. The fuel saving by employing TVC is

very small. This is because 75% of the optimal trajectory lies on the boundary of constraint

(12). The fuel efficiency is already determined along that portion by the maximum allowable

dynamic pressure (2000 psf). TVC can only improve the fuel efficiency in the short initial

climbout and final zoom, which is rather limited. In conclusion, TVC does not appear to



offer significant improvement in fuel saving.

4.2 Simultaneous Design of Ascent Trajectory and Vehicle Configuration

Due to the unprecedented complexity of the aerospace plane, it has been well recognized

that an integrated design approach that encompasses areas of propulsion, aerodynamics,

structure and flight control is a necessity for the success of the vehicle. We believe that a

simultaneous consideration of the design of the trajectory with vehicle design can also be

quite beneficial in terms of further reducing the vehicle size and weight, because it has been

found that there is a strong coupling between requirements on the trajectory and vehicle

design specifications (e.g., the minimax dynamic pressure solution presented in Ref. [3]).

As a very preliminary study, we considered the trajectory optimization problem in which

the control histories a(t) and _(t) (2-D case, no TVC) as well as the vehicle reference area S

are to be optimized. S is chosen because it influences both aerodynamic lift, the main flight

path control force, and the drag which a major fuel portion of the fuel is spent to overcome.

The optimization yields a reference area of 82% of the value given in the original model [5].

The final mass is 68,986 kg, comparing with 67,112 kg with the reference area fixed at the

original value. It should be stressed that this result is obtained by simplistically assuming

that the change of S will not influence the aerodynamic coefficients of the aerospace plane.

This, of course, is not realistic. Nonetheless, the result demonstrates the significant benefits

that could be achieved by combining trajectory design with the vehicle configuration design.
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